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ABSTRACT 

This text proposes a high-level holistic approach for engineering 

reusable, configurable, and composable Digital Twins (DTs) for 

product-development (devDTs). We address the current ambiguity 

in DT definitions by clearly distinguishing devDTs from other 

high-level types of DTs and providing operational definitions for 

them, serving as a mental framework to systematically develop 

and integrate devDT ingredients.  

The core of our approach lies in the concept of a DT-factory, 

which enables on-demand instantiation of (hybrid) devDTs from 

an organization's (or an ecosystem's) digital and physical product- 

and technology-development assets. This enables on one hand a 

separation of concerns on our company's strategic domains, such 

as product development, systems modeling, data engineering, data 

science, and AI. On the other hand, the technological, conceptual, 

and methodological complexity for users of devDTs can be 

systematically reduced to its essence.  

 

Many of the separate ingredients mentioned in this text are 

already well-proven in various software-development and 

organizational contexts (which is what we want to build on), but 

the systematic combination of the concepts and technology 

presented in this paper introduces a novel conceptual base for a 

methodology that not only focuses on the technological aspects 

but also enables effective explanation, adoption strategies, and 

achieving deep digital transformation of complex research and 

development (R&D) activities for stakeholders.  

 

To scope the validity of our proposal: validation has and is 

continuously being done in the complex context of Canon 

Production Printing's R&D activities, which gives us the 

necessary confidence in the scalability and maintainability of our 

holistic approach, ensuring its viability in the face of evolving 

market demands and competitor advancements. Together with our 

company's strategy to develop products relying primarily on DTs 

rather than physical assets only, we believe we have a strong high-

level starting point, inviting further research and collaboration to 

refine the approach.  

CCS CONCEPTS 

• Computing Methodologies → Modeling and simulation 

• Hardware  → Hardware validation → Model 

checking   • Software and its engineering → Software 

organization and properties → Software system structures → 

Software system models → Model-driven software engineering 

KEYWORDS 

digital twin, digital twinning, model-based development, model-

driven development, digital transformation, systems modelling, 

system development 

 

1 Introduction 

Disclaimer: The content of this text represents the personal 

opinions and interpretations of the authors. The information, 

analyses, and conclusions expressed herein are solely those 

of the authors and do not necessarily reflect the views or 

policies of our employer. Our employer cannot be held 

responsible for any inconsistencies, inaccuracies, or errors in 

the content of this paper. The authors alone are responsible 

for any mistakes or omissions and for the validity of the 

information presented. 

In the previous years, a lot of work has been done to 

conceptualize, define, and systemically map out digital twins 

(DTs) and their usages [1,18,13,19 and the various transitive 

citations or linked contents]. Coming from the domain of 

developing products in multi-disciplinary cyber-physical 

systems, we could not find an integrated methodology to 

engineer DTs for everyday practical use in product 

development activities in a composable way that makes it 

sustainable for a commercial business driven by strong 

performance, quality, and pricing market requirements to 

incrementally roadmap and develop digital assets and 

corresponding digital competences with separated concerns 

and spread over various teams, while enabling holistic view 

and operation of a relevant subset of the digital assets as a 

DT for a specific purpose. 

Many examples of DTs exist, but most real-world examples 

one can easily find by doing a (limited) best-effort search 

support the operation of a product (e.g. dashboards, 

supervisory controllers, any other types that run next to an 

operational product in the field with a (soft)real-time digital 

thread). None of these has given us the tools that we need for 

our company to fully leave behind old (in the core document-

https://github.com/eugenschindler
https://www.linkedin.com/in/eugenschindler/
https://www.linkedin.com/in/xmoneva/
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centric) approaches and deeply digitally transform product 

development activities. Therefore, we will provide an 

additional set of definitions in this text which can be used to 

realize digital twins with the above-described desired 

properties. The presented abstractions are defined in such a 

way that they can be mapped to logical digital twin 

component types, such as described in e.g. [1]. 

One main driver for our approach is interoperability. At the 

highest level, digital specification assets and digital 

measurement/logging assets (a.k.a. “models and data”) are 

usually separate worlds, even though there is quite a long 

history of modeling and data science/engineering. Our 

approach seeks to make the “two worlds” explicitly 

interoperable so they can be unified. 

Finally, the technological and techno-conceptual base is a 

good starting point, but not enough to also operationalize 

deep digital transformation. For this to work, the approach 

needs to include explanation and incremental introduction 

(dosing) of the new concepts, method, and way of working in 

a sustainable way without just “resetting everything 

overnight”. 

2 Definitions & Constraints 

It should be noted that the definitions given here are not in any 

way scientific definitions, but rather operational definitions that 

make it possible to perform engineering on various defined 

elements (i.e. to combine or compose them in consistent ways and 

build more complex twinning constructions or (reference) 

architectures). 

In addition to definitions, some constraints on building blocks are 

described. The principle underlying these constraints is that we 

specify a system using a heterogeneous set of tools (each context 

and discipline may choose the digital tools and languages which 

are optimal for their domain, with some constraints to enable 

interoperability) instead of “one tool to rule them all”. We 

recognize efforts such as [12] (which make it easier to implement 

what we propose), but argue that organizations (companies or 

otherwise) need to take control of their own domain and digital 

assets to fully enable them in their digitally transformed activities.  

2.1 DT Building Blocks 

The first basic definition is that of a system (i.e. the physical 

twin), being a group of interacting/interrelated elements that act 

according to a set of rules to form a unified whole [22]. 

Everything in this definition can be prefixed by physical, which 

scopes down to physical twins only, but this might exclude 

twinning of non-physical systems, such as “physical twins” made 

up of software or a rule system like the law (a discussion we had 

with various people). Therefore, we prefer to keep the definition 

broader. 

One can argue for a DT to be a fundamental unit of composition 

(i.e. “DTs all the way down” [23]) and that may be desirable from 

a scientific or purely mathematical point of view, but we have 

discovered that in practice it is better to make clear distinction 

between a DT and the various building blocks it is created of. We 

call one of these building blocks the digital asset and make a 

distinction between the following types: 

- specification: describes some functionality, aspect, or 

structure of a system in a processable digital format and 

allows for system specification and analysis; examples: 

component model of a product’s architecture, CAD 

model of the mechanical geometry of a product’s part, 

state machine describing behavior of a product’s control 

software component. 

- data: digitally captures logging from a product (a 

specific type of system that can produce its own data) or 

measurements/information from a laboratory setup; 

examples: logging from sensors in a product, high-

fidelity capturing of some physical process, motion-

capture data of people’s movements in a lab or in the 

field while using a system. 

- tool: enables either the (manual) maintenance of 

specification assets (e.g. editing of a CAD model, editing 

of a state machine model, editing of a component in a 

component model) or computation on specifications 

and/or data (e.g. simulation, data analysis, any kind of 

computation), or both; this asset is on a different meta-

level from the previous two, i.e. a digital tool typically 

determines the language or meta-model of the 

specifications that are written in it, but it also determines 

the format for computation output. 

Note that “all digital twins are digital assets”, but not “all digital 

assets are digital twins”. The mental model here is that various 

contexts (projects, teams, departments) in a company can develop 

and operate various digital assets potentially in isolation, which 

makes the “business case” for each context much easier to be 

concretized for the stakeholders in that specific context. 

The other building block is called a digital link, which is an 

interface between two or more digital assets that allows for them 

to interoperate in a bigger scope, allowing for composable, 

increasingly complex specification, analysis, and simulation. Here 

we also distinguish different types: 

- traceability link: a “live” association between an element 

in one specification and an element in another 

specification; transitive chaining of traceability links 

enables navigability between specifications 

- harmonized specification-to-specification link: an 

interface which enables automatic export of elements 

from one specification and import of those elements into 

another specification; this requires that the tools which 

are used to maintain the specifications in question speak 

the same language for the exchanged set of elements, i.e. 

the concepts (or meta-model) of the exchanged set of 

elements should match in both tools that enable this 

automated exchange of elements 

- computation-output-to-input link: an interface which 

enables “extracting” computation results from a 

computation executed in one tool and “injecting” these as 
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inputs to a new computation executed another (or the 

same) tool 

- specification-to-computation link: an interface which 

enables querying (typically numeric) information from 

elements in a specification and “injecting” it as input(s) 

to a computation execution 

In order to create automated links between specifications and 

data, the various tools must have non-interactive interfaces 

(files/command-line or another type of API) for starting the tool, 

execution of a computation, and data exchange. Furthermore, 

harmonized linking (and thus automated – and possibly repeated - 

transport of specification elements between tools) requires the 

elements in a tool to be uniquely identifiable, such that 

incremental import/export of elements without breaking internal 

links in a specification to elements imported from another 

specification is possible.  

2.2 DT Types 

Although various types of DTs have already been introduced 

(e.g. [20] which has been prominently quoted on Wikipedia [21]), 

we will define another cross-section of types, which is mainly 

centered around (but not necessarily restricted to) digital twinning 

for (multi-disciplinary cyber-physical) product development. The 

mental model behind the distinction of types we make is from a 

product creation point of view. A high-tech company that creates 

complex multi-disciplinary cyber-physical products, usually needs 

to develop a product that optimally balances functionality with 

various quality attributes (such as performance, costs, and 

productivity). To find this balance, various questions about 

potential architecture-, design-, and implementation choices for a 

product must be answered. In addition to reasoning, there two 

primary tools to try out different design choices and answer 

questions: physical assets (e.g. test setups, laboratory 

measurement setups, physical prototypes) and digital assets (e.g. 

specifications, simulations, logging/measurement data). The 

deliverable the product developers make is a comprehensive and 

holistic specification which describes how to build the product, 

how to service it, and how to match the capabilities of products 

with current and emerging market developments. 

The three types of DTs we distinguish are (see also Figure 1 for 

an overview): 

- Operational Support DTs (osDTs): these DTs run in 

parallel with a product in the field and optimize or 

improve its operations; the digital thread is typically a 

(soft)real-time streaming data interface and the DT can 

be effectively anything on the spectrum from a 

dashboard which allows operators of the product to 

optimize its operations, all the way to a fully automated 

supervisory control system which automatically 

optimizes or improves the product’s operation (operator 

support, service support, etc.); one can wonder whether 

an osDT is part of the product it is twinning [24,25] and 

a lot can and has been said from a scientific point of 

view, but from an engineering point of view, we can 

pragmatically simplify things by stating that “in the 

logical view”, the osDT and the physical twin are 

separate, while “in the deployment view” they can be 

intertwined in sometimes very beneficial and sometimes 

very tricky ways, leaving consequent considerations on 

this topic out of scope for this text.   

- Natural System DTs (nsDTs): these DTs emulate some 

natural system’s (structural and behavioral) properties 

with a degree of usable fidelity (for one or more specific 

purposes); the digital thread is usually made up of 

measurement data captured from a laboratory 

measurement setup; examples: game development assets 

(with their shape, optical properties, and some physical 

properties) scanned in a lab, a heart, a molecule, the 

process of grass growing. 

- Development DTs (devDTs): these DTs twin a product 

(platform) that is being developed, all the way from its 

early inception phase, through development, production, 

servicing, etc. until product sunset; the main difference 

with the earlier types is that the physical twin can be 

anything along the spectrum of product idea, a number of 

prototype setups (possibly in a hybrid digital/physical 

setup), an integrated prototype, or several (parts of) 

deployed products in the field. 

 

Figure 1: Types of DTs by their use 

A devDT can use nsDTs for answering various properties based 

on physical behavior of important natural systems the product 

operates on (such as a printer devDT that can operate on the above 

mentioned nsDTs of ink and a paper substrate). Also, various 

digital assets that make up a devDT can be evolved, if so desired, 

to a stage that they can be used in-product or as part of an osDT 

for a product, which also means that there are various  relations 

possible between devDTs and osDTs.  

The rest of this text will focus on devDTs. 



Self-published whitepaper as input for Workshops on Next-gen 

Digital Twins, September, 2024, Eindhoven, Netherlands 
E. Schindler et al. 

 

 

 

3 Vision and Enablers 

3.1 Vision 

Our vision is to have a holistic approach for digitally 

transformed product development, where we: 

 Capture our knowledge and product/platform (in terms 

of architecture, design, and implementation specifications) 

 in reusable, composable, and (re)configurable models, 

 which leads to a 

 sustainable way to have our knowledge and product 

documentation 

 in explorable, learnable, and virtualizable form. 

3.2 Composition Mechanisms, Infrastructure, 

and Use Cases 

Having pinned down the fundamental building blocks in Section 

2.1, we can start defining ways in which it makes sense to 

compose them. The devDT as shown in Figure 1 (previous page) 

contains specification models (encoded in digital specification 

assets) and analysis models (encoded in tools which have a 

computational component). The depicted devDT also obtains its 

assets from which it is constructed from and can be “run” on a 

storage and execution infrastructure. 

Before we can construct and run a digital twin from various 

digital assets, we need to consider two composition mechanisms 

(see Figure 2 for a more graphical overview): 

3.2.1 Digital Specification Network (DSN). Using the earlier 

described traceability linking and harmonized specification-to-

specification linking mechanisms, we can (but don’t necessarily 

must) connect digital (typically product or product platform) 

specification assets in a DSN of heterogeneous (as opposed to 

storing all specifications in one tool or one database) specification 

assets (depicted as a set of interconnected circles in a grey plane 

inside the Product Specifications box, named domain models). If a 

DSN has only harmonized links (depicted as a solid line), it is 

fully harmonized DSN and if it contains traceability links (dotted 

line), it is hybrid. Obviously, a fully harmonized DSN is the most 

powerful, since it enables a complete single-point-of-truth 

specification of a product. Note that the DSN doesn’t require 

necessarily require a specific way in which elements are 

transported between nodes. We encourage as much as possible the 

use of interoperability mechanisms between standard tools. 

There are two types of DSN tools that are special in a sense that 

they can serve as a backbone for a DSN: component models and 

feature models. Component models make it possible to specify an 

architectural or design decomposition of the product on system-

Figure 2: The  Digital Twin Factory 
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level (where a component is a multi-disciplinary subsystem of the 

product and can have several specifications from various domains 

linked to it as part of the component specification). This allows 

for a model of the system design that can be evolved from the 

beginning through all the lifecycle phases of a product. 

Investigations into how much of the information which is 

normally described in documents can be captured using 

component models with containment, abstract components and 

inheritance, attributes, units, and constraints (well-proven 

software system decomposition and reuse constructs) 

demonstrates a very high coverage on functional requirements and 

system requirements [26] for a complex system like a production 

print engine. 

Feature models allow for explicit capturing of intended 

variability, where a configuration can describe a specific variant. 

The top-level specification of (and with proper metadata also a 

domain model linked to) a component can be extended with 

variability points, which can be linked to the feature model in 

order to configure the component. This enables full description of 

product lines and product platforms with deep traceability and 

analyzability. 

With variability-enabled component models as a backbone to 

organize DSNs, it becomes possible to treat a set of heterogeneous 

specifications (grouped under a component) as a “library”, i.e. to 

extend a DSN with another DSN, to import a DSN into a DSN, 

and thus to specify complete coherent contexts, such as a product 

(subsystem), a platform (subsystem), or another complex, reusable 

set of specification assets that can be used in a product or 

platform. The nodes in a DSN and their interfaces also enable 

controlled replacement of tools behind the nodes if nodes don’t 

match an evolving reference architecture for a DSN. Finally, 

having various nodes over which elements can be transported 

automatically from node to node, enables a high degree of 

flexibility with respect to “which node is the authoritative source 

of information”, which can change quite dynamically during 

various product development phases, which in turn allows people 

to “stay in the DSN” instead of “escaping to hand-written 

documents” again. 

Another interesting aspect of component models, is that a 

component can technically have a “binding time” (similar to a 

variable that is bound with a “let” clause in a functional language) 

towards a context in which it is used. For example: the default 

binding in early phases would be design-time binding, where the 

component is mainly static information in the form of the 

component model and all DSN nodes associated with the 

component. If the component would have a binding to simulation-

time, it could have an instance (similar to a class instance in an 

object-oriented programming language), keeping state that could 

be used as part of the DT’s computational tools. 

3.2.2 Digital Execution Workflow (DEW). Using the earlier 

described computation-output-to-input links, we can (and again, 

don’t necessarily must) connect the computational part of tools in 

a DEW (as depicted in the analysis specifications box in Figure 2 

– previous page). We can reuse the same tool over various DEWs 

and we can use a DEW in a DEW, making a DEW effectively 

behave like a bigger tool composed of tools. From logical 

perspective, a DEW captures an on-demand toolchain for a 

specific (possibly reusable) use case. This allows for sustainable 

and controlled road mapping of tool development and shielding of 

off-the-shelf tools from various specialist use cases that don’t 

work well in a specific context. For example, a complex off-the-

shelf tool which requires measurement data of a physical process 

as well as some (possibly transformed) attribute (or set of 

attributes) of a product specification as input can be composed as 

a single DEW. From a product developer perspective, a tool can 

be used to answer a (usually smaller) question about a potential 

design choice and a DEW can answer bigger questions by 

composing tools and other DEWs. DEWs in themselves are only 

specifications of execution workflows. A mechanism is needed to 

execute DEWs: an execution engine. In its most general case, a 

DEW’s execution can be distributed over several execution 

engines (each of which deals best with a specific case, such as 

(off-the-shelf) co-simulation for a number of domains, run-time 

optimization of a design, a dedicated multi-paradigm simulation 

system, etc.) in several execution platforms (in-house high-

performance compute infrastructure, cloud computation 

infrastructure, or specialized infrastructure such as GPU/TPU or 

quantum computing). 

3.2.3 Infrastructure. In order to manage and execute DSNs and 

DEWs, certain infrastructure is needed (as depicted in the infra 

box in Figure 2 – previous page), such as: 

- high-performance computation infrastructure: the 

infrastructure for executing DEWs; many DEWs 

which execute non-trivial computations, need much 

more than a local machine to run within a reasonable 

amount of time 

- digital specification and tool asset storage and 

versioning: the various digital assets are stored in 

various databases or versioning systems; depending 

on the required longevity for digital assets, it may be 

strongly recommended to use reliable systems, such 

as ALM or PLM 

- data warehouse/data lake: all data assets (physical 

logging, measurements, simulation logging), which 

can (if properly combined) serve as digital shadows 

[1], need to be available for correlation with 

specifications or computations, for analysis, and for 

general reuse 

3.2.4 From DSN and DEW to the Digital Twin Factory (DTF). 

The remarkable thing about the decomposition mechanism in 

DSNs, is that they are not only suitable for product specifications, 

but also for DT specifications. Considering that a DEW, or any 

other specifications such as design space explorations on top of a 

DSN and a (set of) DEW(s), are also just nodes in a DSN and can 

be extended with variability points, the same reuse mechanisms 

that exist for product specifications also work for DT 

specifications. Especially for devDTs (which have a strong 

relation with a product that is being developed), the organization 
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of the digital assets in DSN and DEW has a lot of the information 

available to simply instantiate a (parametric, if so desired), DT on 

demand in order to perform a design space 

exploration/optimization or answer other product-development-

related questions. Figure 2 (previous page) shows an example of 

three different DTs composed and instantiated in such a manner: 

- the green overlay (starting at the most left 

configuration in the product specifications box) 

represents the digital assets required to configure and 

instantiate a DT without a digital thread: a specific 

product variant that is used to configure the product 

specifications from a 150% model [27] to a 100% 

model and then, based on that specific variant, 

feeding a DEW with settings from the product 

variant, which, after execution will either present 

results in the usual visualizations provided by the 

separate tools, or be further processed by another 

tool for higher-level visualizations or even use the 

product specifications to interpret the results deeper 

in the context of the DT’s purpose (the question 

originally considered by the product developer) 

- the yellow overlay (starting at the mostright 

configuration in the product specifications box) 

illustrates the same as the green overlay, but with a 

different product variant and different tools (due to a 

purpose, i.e. a different question considered by the 

product developer) 

- the purple overlay (which is the last one left) 

represents the digital assets required to configure and 

instantiate a DT with a digital thread: logging data 

from a physical twin is stored in the data warehouse 

and one of the tools in the DEW is a data analysis 

computation (data processing script, machine 

learning, or other type of data analysis computation) 

whose outputs can then be fed into other 

computations in the DEW. 

The stakeholder roles of a DTF are: 

1. product developers: benefit most from the high-level 

connections that can be made with a DSN or from 

DSN to DEW, because the DTs instantiated from the 

DTF give them ways to explore various product 

design choices and come up with the most optimal 

design; this approach becomes even more powerful 

if devDTs are combined with design space 

exploration and multi-objective optimization 

techniques. 

2. (computational) tool developers: should provide 

connectors with their tools (such as the earlier 

mentioned “injectors” and “extractors”) in order for 

them to be interoperable with other tools meant for 

use in a DTF ecosystem; these stakeholders can also 

use the DTF as an infrastructure for validation, 

calibration, and learning of their tools, e.g. 

revalidating a tool’s computational model upon 

extending the feature set or fixing bugs (similar to 

unit testing of software, but on a computational-

model-validation-level). 

3. DT integrators: benefit most from the DTF concepts 

as a specialized language to drive integration of DTs 

in the organization; also benefit from the DTF 

specification mechanisms, such as DSN, DEW, and 

design space explorations and optimizations, which 

make it possible to analyze DT structures and check 

progress on various separate digital assets through 

incremental integration. 

A few other topics (such as code generation from product 

specifications, semantic research document search, and question-

based DT instantiation using e.g. LLM technologies) are shown in 

Figure 2 (two pages back), but not further discussed in this text. 

3.3 Technological Enablers 

Realization of the vision and DTF concepts can only be made 

feasible with the right technological ingredients, which we will 

touch upon here on a high level: 

3.3.1 Domain-specific Languages (DSLs). This technology 

forms the fundamentals for connecting nodes in a DSN (or in 

other words: for encoding and organizing an organization’s 

subject matter) in a feasible way. In its most naïve form, the 

connections between the nodes in a DSN are hand-written scripts 

that query elements from one specification and write them into 

another. This approach is perfectly fine to start with, but as an 

organization extends its ecosystem and DSNs start growing in 

complexity, it may become unscalable. A more systematic 

approach (enabling much more reuse and automation) would be to 

capture the metadata for the elements one wants to exchange 

from/to a specification. Again, a naïve implementation of this idea 

would be to make a glossary of important subject matter terms of 

the product’s or the organization’s domain and then match 

keywords. Such metadata could help with traceability, but not 

with harmonization between nodes in a DSN. A more advanced 

implementation would be to use a decomposable glossary (where 

a definition can use other terms that can be further defined 

hierarchically), or even better an ontology with more explicit 

relations between the concepts of the subject matter. The same 

purpose can be achieved using DSLs built in a language 

workbench with an object grammar, such as JetBrains 

MetaProgrammingSystem (MPS) [2], but in a much more refined 

way: a DSL encoded in MPS can not only hold the concepts and 

their relations but also other language aspects, including various 

language composition and extension mechanisms, which enables 

deep integration of subject matter from various domains in a 

maintainable way. Specifying and using DSLs in this way, where 

the Abstract Syntax Tree (AST) – representing the essential 

information of a specification – is central used to be unique to 

JetBrains MPS, but more effort is being done to spread this 

paradigm beyond MPS, which is demonstrated by efforts such as 

Modelix [8] and LionWeb [9], where AST-based exchange of 
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elements between specifications (as opposed to file-based 

exchange between specifications) is a first-class citizen. 

3.3.2 Integrational DSL cores. Organizing the various subject 

matter domains from tools (whether they are off-the-shelf or in-

house) can be achieved systematically by using integrational 

DSLs, such as the earlier mentioned component models, feature 

models, but also at a deeper level of expressions and constraints. 

The Integrated Environment for Technical Software Systems 

Specification (IETS3) [4], which is built in MPS, provides 

important ingredients, such as an out-of-the-box variant 

management framework that can be connected to and configure 

models written in MPS-based DSLs for any domain [28,29], a 

featureful, extensible functional language (KernelF) that serves as 

a base for building and integrating complex MPS-based DSLs 

with expressions [5,6,7], and a physical units language with 

customizable units that are part of an attribute or constraint 

expression’s type. Figure 3 shows how such DSLs (together with 

a component modeling language) can serve as a backbone to 

organize and integrate the subject matter through various domains 

of an organization. For example: the mechanics/software 

discipline interface language can be used to expose relevant 

parameters of a CAD model on system-level in a component 

model (e.g. as component attribute). 

3.3.2 Computing platform. High-performance compute 

infrastructure is an important prerequisite to be able to run non-

trivial DEWs. Although computation capacity can be bought 

online, it may be prudent to invest into building an in-house 

computation platform, not only for keeping confidential 

information inside the organization’s perimeter, but also for cost 

considerations. A rule of thumb is that operational (thus recurring) 

computation capacity should be covered in-house, while 

incidental spike capacity can be rented externally. In addition to 

one or more computation platforms, execution engines are needed. 

Various off-the-shelf workflow engines exist for these purposes, 

but the mapping from a DEW specification to one or more 

execution engines that run on one or more execution platforms, 

would be (at least nowadays) part of a DTF’s in-house 

implementation. 

3.3.2 DevOps and Cloud Technologies. Various off-the-shelf 

ALM and PLM systems are available to manage digital assets. 

Typically, tools and DTF infrastructure tools benefit a lot from 

DevOps infrastructure to guard quality and validity through 

testing and automatic (re-)validation. Cloud technologies, both 

front-end and back-end are essential to scale the use of a growing 

set of complex combinations of various tools. Back-end 

technologies enable scalable deployment of various 

(collaborative) specification (micro-)services, while front-end 

technologies allow for user-level integration of many complex 

services into conceptually clear and unified user interfaces. 

3.3.2 Data + modeling strategy. In order for the data in the data 

warehouse to be reusable for various purposes (such as data 

analysis, computational model validation, and preparation for 

input to computations, the production of data must be precisely 

specified for structured logging [30,31,32] and preferably 

connected to the product specifications. This makes it possible to 

make important mappings for data logging (with the product 

specifications as the leading source) and for data consumption by 

devDTs [17]. 

Figure 3: JetBrains MPS language workbench and integrational DSL cores: backbone to organize an organization’s subject matter 
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4 Holistic Organizational Embedding 

The earlier described technological and conceptual base for a 

DTF is a good starting point to digitally transform complex 

product development in a systematic way, but it doesn’t guarantee 

actual “success on the work floor”. Additional variables, such as 

expertise of people, way of working, explicit roles and 

responsibility in the organization, and a process around asset 

management (physical and digital together) factor into the 

equation. All are centered around knowledge/expertise 

development and applied in product development. 

4.1 Physical and digital assets 

When considering physical and digital assets, there are several 

relevant dimensions: 

I. Product contents scope 

a. Discipline (i.e. “mono-disciplinary”) 

b. Product functionality (one or more 

disciplines) 

c. Product quality attribute (cuts across one or 

more functionalities) 

d. Product (overarches one or more quality 

attributes) 

e. Platform (stretches over one or more 

products) 

II. Organizational 

a. Competences (disciplines, departments) and 

Platform: captures and maintains knowledge 

and typically has its own organization-specific 

set of roles. Focuses on reuse and supporting 

competences (knowledge – IP and generic, 

process, roles) across projects, endless; owns 

physical and digital assets. 

b. Product development: uses knowledge to 

develop products, places knowledge in a 

specific context. Solves project needs. 

III. Asset types 

a. On one side we have the knowledge/expertise 

development, involving infrastructure, tools, 

and model libraries (reusable assets) 

b. On the other side we have product 

development involving models and 

configurations (product-specific assets) 

IV. Domain-specificity: Generic/fundamental ↔ Quality 

attributes and functionality ↔ Organization-specific 

(“core IP”) 

V. Ownership/development 

a. (Commercial) off-the-shelf ↔ in-house 

VI. Expertise 

a. Expertise levels: novice … expert [33] 

b. Expertise areas: application, fundamental, 

digital literacy and knowledge of working 

with physical assets 

c. Proto-roles: method owner, user, tool smith 

(minimum set needed for successful digital 

asset introduction and sustaining)  

The complexity of (a holistic view on a collection of) assets is 

like a cartesian product along (at least) each of the above 

described dimensions (imagine a combination of sliders, one or 

more for each dimension): I × II × III × IV × V × VIa × VIb × 

VIc. Making no choice in a dimension is also a choice, and in our 

experience every choice leads to consequences. 

4.2 Digitally Transformed Development 

Processes and Organization 

This kind of digital transformation involves moving away from 

the “old” physical-prototype-based way of working (“build a 

product demonstrator and see if it works, how it behaves, what its 

capabilities are”) to the new DTF-based way of working (“first 

think about design questions and risks, then think about how you 

can answer the questions, and finally answer them”). This opens 

up new options to answer product-development-related questions: 

in addition to using integrated testbenches or fully integrated 

product prototypes, on-demand digital twins (or hybrid physical-

digital setups) can be used. This not only enables smarter use of 

expensive physical assets such as partial testbenches or laboratory 

measurement setups (optimally for solely mapping out unknown-

unknown or known-unknown knowledge, while handling known-

knowns and unknown-knowns with digital assets), but also opens 

up the space of possibilities to answer questions and improves 

development lead-time by front-loading many integration-related 

Figure 4: Applying the DTF-based approach in product development 
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questions to digital assets (which can be made operational much 

quicker than physical assets). 

The new, proposed way of working not only has advantages, but 

also poses new challenges: 

4.2.1 How to develop new assets. Development of new or 

significant adaptation of existing digital assets (especially over the 

lifetime of a single product development phase) is not always 

straightforward. For example, in an early development phase of a 

product, you already need tools with validated computational 

models but one or more of the needed tools may not be developed 

yet; however, it can happen that once a needed tool is made, there 

is no significant value for the product in question, because 

important architectural and design decisions may have already 

been made for that product. This challenge not only requires a 

new mindset and understanding of product developers on what to 

expect from digital assets (see Figure 4, second column), but also 

a road mapping of asset and competence development across 

products or even entire product portfolios.  

4.2.2 How to apply in product development. Figure 5 visualizes 

the method for applying the DTF-based way of working in such a 

manner, that development steps maximally leverage any available 

just-in-time knowledge, front-loading design option investigations 

as much as possible. This method involves a stepwise, 

incremental process: 

- The starting point is an architectural or design 

question (left top blue text in capitals). 

- If the question can be answered in the DSN of the 

product (e.g. through simple “Excel-like” 

computations on the component model or some 

lightweight computations in other specification 

assets), the answer is already obtained (possibly after 

first making new or updating existing product 

specifications) and a next question is formulated. 

- Should the question be more involved, the next step 

is to try to answer the question using analysis models 

(i.e. in an existing DEW). In case no ready-to-use 

DEW or design space exploration/optimization 

specification exists for the question, the DT 

integrator(s) is/are involved to create a DEW. 

- In case the question cannot be answered using a DT 

(DSN, DEW, or a mix of both), it may be possible to 

answer the question through querying and analyzing 

data from the data warehouse (possibly needing to 

develop a new data analysis). A check should be 

made whether the data from the data warehouse can 

be used to extend a DEW so it could answer this 

question in the future. 

- As a last resort, a (set of) physical setup(s) can be 

used to do a physical experiment in order to answer 

the question. In line with data + models strategy, any 

logging or measurement data from a physical setup 

must be collected in the data warehouse. 

Figure 5: A stepwise, incremental process to using the DTF-based way of working 
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If this process is followed, then every R&D activity in product 

development contributes to an ever growing corpus of knowledge 

which is explorable, learnable, and virtualizable. A note must be 

made about physical assets: these must be developed with 

reusability over various products or product portfolios in mind. 

Again, the above described process, combined with the DTF-

based way of working and infrastructure, helps a lot in designing 

reusable physical assets: if (sets of) digital assets are linked up 

(threaded) with physical assets through the DT abstraction, as 

defined in the DTF proposal, there can be an organization-wide 

insight into physical asset needs, physical asset waste, and 

prevention of accidental dismantling of still needed physical 

assets. 

5 Current State 

We believe that we currently have a solid base for a DTF-based 

way of working and have started to sustainably introduce the 

technological concepts and method to our organization (starting 

with the R&D department). While doing so, we are validating 

tools and methods in this conceptual framework in real-world use 

cases, which gives us information for further developing the tools, 

methods, and general approach. 

This sounds like a very big step, but we reuse, leverage, and 

bring together all the existing infrastructure and assets our 

organization has developed over the years, sustainably spreading 

the development and maintenance of the tools and infrastructure 

needed for this approach. 

We, as well as our organization, have a significant history in 

this field [10,11,14,15,16] on various topics such as software 

development, system development, language development, and 

(multi-disciplinary) modeling and model interoperability, so to us 

the DTF is not a surprise or “Aha-moment”, but rather a logical 

continuation and consolidation of many lessons we learnt into a 

conceptual framework (i.e. it is an evolution rather than a 

revolution).  

Although we have developed and validated digital assets and 

various building blocks of the DTF in smaller contexts (stage 4 in 

Figure 6), the full-scale application of the DTF-based way of 

working for an entire complex multi-disciplinary cyber-physical 

product is currently in a first-application phase (stage 3 in Figure 

6), as part of our company’s digital transformation strategy, where 

in-the-large validation for our incremental, holistic approach is 

performed. 

6 Conclusions and Possible Extensions 

We believe that we have created a holistic, scalable, and 

maintainable approach to digitally enhance and deeply transform 

our product development activities, with obvious benefits such as 

shorter time-to-market, customization, and managing the growing 

complexity of our products. 

Our company’s trust in using such a sustainable, incremental 

development approach to physical/digital assets and competences 

strategically gives us confidence to claim that we have a feasible 

starting point for a holistic approach to engineering reusable, 

configurable, and composable DTs for multi-disciplinary, cyber-

physical product development purposes. 

Since the concepts described in this text are only a starting point 

for an exciting journey, we invite the DT community to 

collaborate on this approach. Concrete examples of topics that 

may be areas of interest for us: 

- A solid semantic base for interaction between DSNs, 

component models, and feature models, as well as for 

DEWs and all their intricacies 

- (Semi-)automatic metadata scanning from digital assets 

and harmonization of digital assets  

- Semantics for component binding times (e.g. design-

time, simulation-time, production-time, in-the-field) 

- Semantic search and intelligent question-based DT 

instantiation 
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