
Needs for a Holistic Approach to Engineering Reusable,

Configurable, and Composable Development Digital Twins

for Multi-disciplinary, Cyber-physical Product Development Purposes

Eugen Schindler
 Research & Development

 Canon Production Printing

 Venlo, The Netherlands

 Github / LinkedIn

Hristina Moneva
 Research & Development

 Canon Production Printing

 Venlo, The Netherlands

LinkedIn

ABSTRACT

This text proposes a high-level holistic approach for engineering

reusable, configurable, and composable Digital Twins (DTs) for

product-development (devDTs). We address the current ambiguity

in DT definitions by clearly distinguishing devDTs from other

high-level types of DTs and providing operational definitions for

them, serving as a mental framework to systematically develop

and integrate devDT ingredients.

The core of our approach lies in the concept of a DT-factory,

which enables on-demand instantiation of (hybrid) devDTs from

an organization's (or an ecosystem's) digital and physical product-

and technology-development assets. This enables on one hand a

separation of concerns on our company's strategic domains, such

as product development, systems modeling, data engineering, data

science, and AI. On the other hand, the technological, conceptual,

and methodological complexity for users of devDTs can be

systematically reduced to its essence.

Many of the separate ingredients mentioned in this text are

already well-proven in various software-development and

organizational contexts (which is what we want to build on), but

the systematic combination of the concepts and technology

presented in this paper introduces a novel conceptual base for a

methodology that not only focuses on the technological aspects

but also enables effective explanation, adoption strategies, and

achieving deep digital transformation of complex research and

development (R&D) activities for stakeholders.

To scope the validity of our proposal: validation has and is

continuously being done in the complex context of Canon

Production Printing's R&D activities, which gives us the

necessary confidence in the scalability and maintainability of our

holistic approach, ensuring its viability in the face of evolving

market demands and competitor advancements. Together with our

company's strategy to develop products relying primarily on DTs

rather than physical assets only, we believe we have a strong high-

level starting point, inviting further research and collaboration to

refine the approach.

CCS CONCEPTS

• Computing Methodologies → Modeling and simulation

• Hardware → Hardware validation → Model

checking • Software and its engineering → Software

organization and properties → Software system structures →

Software system models → Model-driven software engineering

KEYWORDS

digital twin, digital twinning, model-based development, model-

driven development, digital transformation, systems modelling,

system development

1 Introduction

Disclaimer: The content of this text represents the personal

opinions and interpretations of the authors. The information,

analyses, and conclusions expressed herein are solely those

of the authors and do not necessarily reflect the views or

policies of our employer. Our employer cannot be held

responsible for any inconsistencies, inaccuracies, or errors in

the content of this paper. The authors alone are responsible

for any mistakes or omissions and for the validity of the

information presented.

In the previous years, a lot of work has been done to

conceptualize, define, and systemically map out digital twins

(DTs) and their usages [1,18,13,19 and the various transitive

citations or linked contents]. Coming from the domain of

developing products in multi-disciplinary cyber-physical

systems, we could not find an integrated methodology to

engineer DTs for everyday practical use in product

development activities in a composable way that makes it

sustainable for a commercial business driven by strong

performance, quality, and pricing market requirements to

incrementally roadmap and develop digital assets and

corresponding digital competences with separated concerns

and spread over various teams, while enabling holistic view

and operation of a relevant subset of the digital assets as a

DT for a specific purpose.

Many examples of DTs exist, but most real-world examples

one can easily find by doing a (limited) best-effort search

support the operation of a product (e.g. dashboards,

supervisory controllers, any other types that run next to an

operational product in the field with a (soft)real-time digital

thread). None of these has given us the tools that we need for

our company to fully leave behind old (in the core document-

https://github.com/eugenschindler
https://www.linkedin.com/in/eugenschindler/
https://www.linkedin.com/in/xmoneva/

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

centric) approaches and deeply digitally transform product

development activities. Therefore, we will provide an

additional set of definitions in this text which can be used to

realize digital twins with the above-described desired

properties. The presented abstractions are defined in such a

way that they can be mapped to logical digital twin

component types, such as described in e.g. [1].

One main driver for our approach is interoperability. At the

highest level, digital specification assets and digital

measurement/logging assets (a.k.a. “models and data”) are

usually separate worlds, even though there is quite a long

history of modeling and data science/engineering. Our

approach seeks to make the “two worlds” explicitly

interoperable so they can be unified.

Finally, the technological and techno-conceptual base is a

good starting point, but not enough to also operationalize

deep digital transformation. For this to work, the approach

needs to include explanation and incremental introduction

(dosing) of the new concepts, method, and way of working in

a sustainable way without just “resetting everything

overnight”.

2 Definitions & Constraints

It should be noted that the definitions given here are not in any

way scientific definitions, but rather operational definitions that

make it possible to perform engineering on various defined

elements (i.e. to combine or compose them in consistent ways and

build more complex twinning constructions or (reference)

architectures).

In addition to definitions, some constraints on building blocks are

described. The principle underlying these constraints is that we

specify a system using a heterogeneous set of tools (each context

and discipline may choose the digital tools and languages which

are optimal for their domain, with some constraints to enable

interoperability) instead of “one tool to rule them all”. We

recognize efforts such as [12] (which make it easier to implement

what we propose), but argue that organizations (companies or

otherwise) need to take control of their own domain and digital

assets to fully enable them in their digitally transformed activities.

2.1 DT Building Blocks

The first basic definition is that of a system (i.e. the physical

twin), being a group of interacting/interrelated elements that act

according to a set of rules to form a unified whole [22].

Everything in this definition can be prefixed by physical, which

scopes down to physical twins only, but this might exclude

twinning of non-physical systems, such as “physical twins” made

up of software or a rule system like the law (a discussion we had

with various people). Therefore, we prefer to keep the definition

broader.

One can argue for a DT to be a fundamental unit of composition

(i.e. “DTs all the way down” [23]) and that may be desirable from

a scientific or purely mathematical point of view, but we have

discovered that in practice it is better to make clear distinction

between a DT and the various building blocks it is created of. We

call one of these building blocks the digital asset and make a

distinction between the following types:

- specification: describes some functionality, aspect, or

structure of a system in a processable digital format and

allows for system specification and analysis; examples:

component model of a product’s architecture, CAD

model of the mechanical geometry of a product’s part,

state machine describing behavior of a product’s control

software component.

- data: digitally captures logging from a product (a

specific type of system that can produce its own data) or

measurements/information from a laboratory setup;

examples: logging from sensors in a product, high-

fidelity capturing of some physical process, motion-

capture data of people’s movements in a lab or in the

field while using a system.

- tool: enables either the (manual) maintenance of

specification assets (e.g. editing of a CAD model, editing

of a state machine model, editing of a component in a

component model) or computation on specifications

and/or data (e.g. simulation, data analysis, any kind of

computation), or both; this asset is on a different meta-

level from the previous two, i.e. a digital tool typically

determines the language or meta-model of the

specifications that are written in it, but it also determines

the format for computation output.

Note that “all digital twins are digital assets”, but not “all digital

assets are digital twins”. The mental model here is that various

contexts (projects, teams, departments) in a company can develop

and operate various digital assets potentially in isolation, which

makes the “business case” for each context much easier to be

concretized for the stakeholders in that specific context.

The other building block is called a digital link, which is an

interface between two or more digital assets that allows for them

to interoperate in a bigger scope, allowing for composable,

increasingly complex specification, analysis, and simulation. Here

we also distinguish different types:

- traceability link: a “live” association between an element

in one specification and an element in another

specification; transitive chaining of traceability links

enables navigability between specifications

- harmonized specification-to-specification link: an

interface which enables automatic export of elements

from one specification and import of those elements into

another specification; this requires that the tools which

are used to maintain the specifications in question speak

the same language for the exchanged set of elements, i.e.

the concepts (or meta-model) of the exchanged set of

elements should match in both tools that enable this

automated exchange of elements

- computation-output-to-input link: an interface which

enables “extracting” computation results from a

computation executed in one tool and “injecting” these as

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

inputs to a new computation executed another (or the

same) tool

- specification-to-computation link: an interface which

enables querying (typically numeric) information from

elements in a specification and “injecting” it as input(s)

to a computation execution

In order to create automated links between specifications and

data, the various tools must have non-interactive interfaces

(files/command-line or another type of API) for starting the tool,

execution of a computation, and data exchange. Furthermore,

harmonized linking (and thus automated – and possibly repeated -

transport of specification elements between tools) requires the

elements in a tool to be uniquely identifiable, such that

incremental import/export of elements without breaking internal

links in a specification to elements imported from another

specification is possible.

2.2 DT Types

Although various types of DTs have already been introduced

(e.g. [20] which has been prominently quoted on Wikipedia [21]),

we will define another cross-section of types, which is mainly

centered around (but not necessarily restricted to) digital twinning

for (multi-disciplinary cyber-physical) product development. The

mental model behind the distinction of types we make is from a

product creation point of view. A high-tech company that creates

complex multi-disciplinary cyber-physical products, usually needs

to develop a product that optimally balances functionality with

various quality attributes (such as performance, costs, and

productivity). To find this balance, various questions about

potential architecture-, design-, and implementation choices for a

product must be answered. In addition to reasoning, there two

primary tools to try out different design choices and answer

questions: physical assets (e.g. test setups, laboratory

measurement setups, physical prototypes) and digital assets (e.g.

specifications, simulations, logging/measurement data). The

deliverable the product developers make is a comprehensive and

holistic specification which describes how to build the product,

how to service it, and how to match the capabilities of products

with current and emerging market developments.

The three types of DTs we distinguish are (see also Figure 1 for

an overview):

- Operational Support DTs (osDTs): these DTs run in

parallel with a product in the field and optimize or

improve its operations; the digital thread is typically a

(soft)real-time streaming data interface and the DT can

be effectively anything on the spectrum from a

dashboard which allows operators of the product to

optimize its operations, all the way to a fully automated

supervisory control system which automatically

optimizes or improves the product’s operation (operator

support, service support, etc.); one can wonder whether

an osDT is part of the product it is twinning [24,25] and

a lot can and has been said from a scientific point of

view, but from an engineering point of view, we can

pragmatically simplify things by stating that “in the

logical view”, the osDT and the physical twin are

separate, while “in the deployment view” they can be

intertwined in sometimes very beneficial and sometimes

very tricky ways, leaving consequent considerations on

this topic out of scope for this text.

- Natural System DTs (nsDTs): these DTs emulate some

natural system’s (structural and behavioral) properties

with a degree of usable fidelity (for one or more specific

purposes); the digital thread is usually made up of

measurement data captured from a laboratory

measurement setup; examples: game development assets

(with their shape, optical properties, and some physical

properties) scanned in a lab, a heart, a molecule, the

process of grass growing.

- Development DTs (devDTs): these DTs twin a product

(platform) that is being developed, all the way from its

early inception phase, through development, production,

servicing, etc. until product sunset; the main difference

with the earlier types is that the physical twin can be

anything along the spectrum of product idea, a number of

prototype setups (possibly in a hybrid digital/physical

setup), an integrated prototype, or several (parts of)

deployed products in the field.

Figure 1: Types of DTs by their use

A devDT can use nsDTs for answering various properties based

on physical behavior of important natural systems the product

operates on (such as a printer devDT that can operate on the above

mentioned nsDTs of ink and a paper substrate). Also, various

digital assets that make up a devDT can be evolved, if so desired,

to a stage that they can be used in-product or as part of an osDT

for a product, which also means that there are various relations

possible between devDTs and osDTs.

The rest of this text will focus on devDTs.

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

3 Vision and Enablers

3.1 Vision

Our vision is to have a holistic approach for digitally

transformed product development, where we:

 Capture our knowledge and product/platform (in terms

of architecture, design, and implementation specifications)

 in reusable, composable, and (re)configurable models,

 which leads to a

 sustainable way to have our knowledge and product

documentation

 in explorable, learnable, and virtualizable form.

3.2 Composition Mechanisms, Infrastructure,

and Use Cases

Having pinned down the fundamental building blocks in Section

2.1, we can start defining ways in which it makes sense to

compose them. The devDT as shown in Figure 1 (previous page)

contains specification models (encoded in digital specification

assets) and analysis models (encoded in tools which have a

computational component). The depicted devDT also obtains its

assets from which it is constructed from and can be “run” on a

storage and execution infrastructure.

Before we can construct and run a digital twin from various

digital assets, we need to consider two composition mechanisms

(see Figure 2 for a more graphical overview):

3.2.1 Digital Specification Network (DSN). Using the earlier

described traceability linking and harmonized specification-to-

specification linking mechanisms, we can (but don’t necessarily

must) connect digital (typically product or product platform)

specification assets in a DSN of heterogeneous (as opposed to

storing all specifications in one tool or one database) specification

assets (depicted as a set of interconnected circles in a grey plane

inside the Product Specifications box, named domain models). If a

DSN has only harmonized links (depicted as a solid line), it is

fully harmonized DSN and if it contains traceability links (dotted

line), it is hybrid. Obviously, a fully harmonized DSN is the most

powerful, since it enables a complete single-point-of-truth

specification of a product. Note that the DSN doesn’t require

necessarily require a specific way in which elements are

transported between nodes. We encourage as much as possible the

use of interoperability mechanisms between standard tools.

There are two types of DSN tools that are special in a sense that

they can serve as a backbone for a DSN: component models and

feature models. Component models make it possible to specify an

architectural or design decomposition of the product on system-

Figure 2: The Digital Twin Factory

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

level (where a component is a multi-disciplinary subsystem of the

product and can have several specifications from various domains

linked to it as part of the component specification). This allows

for a model of the system design that can be evolved from the

beginning through all the lifecycle phases of a product.

Investigations into how much of the information which is

normally described in documents can be captured using

component models with containment, abstract components and

inheritance, attributes, units, and constraints (well-proven

software system decomposition and reuse constructs)

demonstrates a very high coverage on functional requirements and

system requirements [26] for a complex system like a production

print engine.

Feature models allow for explicit capturing of intended

variability, where a configuration can describe a specific variant.

The top-level specification of (and with proper metadata also a

domain model linked to) a component can be extended with

variability points, which can be linked to the feature model in

order to configure the component. This enables full description of

product lines and product platforms with deep traceability and

analyzability.

With variability-enabled component models as a backbone to

organize DSNs, it becomes possible to treat a set of heterogeneous

specifications (grouped under a component) as a “library”, i.e. to

extend a DSN with another DSN, to import a DSN into a DSN,

and thus to specify complete coherent contexts, such as a product

(subsystem), a platform (subsystem), or another complex, reusable

set of specification assets that can be used in a product or

platform. The nodes in a DSN and their interfaces also enable

controlled replacement of tools behind the nodes if nodes don’t

match an evolving reference architecture for a DSN. Finally,

having various nodes over which elements can be transported

automatically from node to node, enables a high degree of

flexibility with respect to “which node is the authoritative source

of information”, which can change quite dynamically during

various product development phases, which in turn allows people

to “stay in the DSN” instead of “escaping to hand-written

documents” again.

Another interesting aspect of component models, is that a

component can technically have a “binding time” (similar to a

variable that is bound with a “let” clause in a functional language)

towards a context in which it is used. For example: the default

binding in early phases would be design-time binding, where the

component is mainly static information in the form of the

component model and all DSN nodes associated with the

component. If the component would have a binding to simulation-

time, it could have an instance (similar to a class instance in an

object-oriented programming language), keeping state that could

be used as part of the DT’s computational tools.

3.2.2 Digital Execution Workflow (DEW). Using the earlier

described computation-output-to-input links, we can (and again,

don’t necessarily must) connect the computational part of tools in

a DEW (as depicted in the analysis specifications box in Figure 2

– previous page). We can reuse the same tool over various DEWs

and we can use a DEW in a DEW, making a DEW effectively

behave like a bigger tool composed of tools. From logical

perspective, a DEW captures an on-demand toolchain for a

specific (possibly reusable) use case. This allows for sustainable

and controlled road mapping of tool development and shielding of

off-the-shelf tools from various specialist use cases that don’t

work well in a specific context. For example, a complex off-the-

shelf tool which requires measurement data of a physical process

as well as some (possibly transformed) attribute (or set of

attributes) of a product specification as input can be composed as

a single DEW. From a product developer perspective, a tool can

be used to answer a (usually smaller) question about a potential

design choice and a DEW can answer bigger questions by

composing tools and other DEWs. DEWs in themselves are only

specifications of execution workflows. A mechanism is needed to

execute DEWs: an execution engine. In its most general case, a

DEW’s execution can be distributed over several execution

engines (each of which deals best with a specific case, such as

(off-the-shelf) co-simulation for a number of domains, run-time

optimization of a design, a dedicated multi-paradigm simulation

system, etc.) in several execution platforms (in-house high-

performance compute infrastructure, cloud computation

infrastructure, or specialized infrastructure such as GPU/TPU or

quantum computing).

3.2.3 Infrastructure. In order to manage and execute DSNs and

DEWs, certain infrastructure is needed (as depicted in the infra

box in Figure 2 – previous page), such as:

- high-performance computation infrastructure: the

infrastructure for executing DEWs; many DEWs

which execute non-trivial computations, need much

more than a local machine to run within a reasonable

amount of time

- digital specification and tool asset storage and

versioning: the various digital assets are stored in

various databases or versioning systems; depending

on the required longevity for digital assets, it may be

strongly recommended to use reliable systems, such

as ALM or PLM

- data warehouse/data lake: all data assets (physical

logging, measurements, simulation logging), which

can (if properly combined) serve as digital shadows

[1], need to be available for correlation with

specifications or computations, for analysis, and for

general reuse

3.2.4 From DSN and DEW to the Digital Twin Factory (DTF).

The remarkable thing about the decomposition mechanism in

DSNs, is that they are not only suitable for product specifications,

but also for DT specifications. Considering that a DEW, or any

other specifications such as design space explorations on top of a

DSN and a (set of) DEW(s), are also just nodes in a DSN and can

be extended with variability points, the same reuse mechanisms

that exist for product specifications also work for DT

specifications. Especially for devDTs (which have a strong

relation with a product that is being developed), the organization

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

of the digital assets in DSN and DEW has a lot of the information

available to simply instantiate a (parametric, if so desired), DT on

demand in order to perform a design space

exploration/optimization or answer other product-development-

related questions. Figure 2 (previous page) shows an example of

three different DTs composed and instantiated in such a manner:

- the green overlay (starting at the most left

configuration in the product specifications box)

represents the digital assets required to configure and

instantiate a DT without a digital thread: a specific

product variant that is used to configure the product

specifications from a 150% model [27] to a 100%

model and then, based on that specific variant,

feeding a DEW with settings from the product

variant, which, after execution will either present

results in the usual visualizations provided by the

separate tools, or be further processed by another

tool for higher-level visualizations or even use the

product specifications to interpret the results deeper

in the context of the DT’s purpose (the question

originally considered by the product developer)

- the yellow overlay (starting at the mostright

configuration in the product specifications box)

illustrates the same as the green overlay, but with a

different product variant and different tools (due to a

purpose, i.e. a different question considered by the

product developer)

- the purple overlay (which is the last one left)

represents the digital assets required to configure and

instantiate a DT with a digital thread: logging data

from a physical twin is stored in the data warehouse

and one of the tools in the DEW is a data analysis

computation (data processing script, machine

learning, or other type of data analysis computation)

whose outputs can then be fed into other

computations in the DEW.

The stakeholder roles of a DTF are:

1. product developers: benefit most from the high-level

connections that can be made with a DSN or from

DSN to DEW, because the DTs instantiated from the

DTF give them ways to explore various product

design choices and come up with the most optimal

design; this approach becomes even more powerful

if devDTs are combined with design space

exploration and multi-objective optimization

techniques.

2. (computational) tool developers: should provide

connectors with their tools (such as the earlier

mentioned “injectors” and “extractors”) in order for

them to be interoperable with other tools meant for

use in a DTF ecosystem; these stakeholders can also

use the DTF as an infrastructure for validation,

calibration, and learning of their tools, e.g.

revalidating a tool’s computational model upon

extending the feature set or fixing bugs (similar to

unit testing of software, but on a computational-

model-validation-level).

3. DT integrators: benefit most from the DTF concepts

as a specialized language to drive integration of DTs

in the organization; also benefit from the DTF

specification mechanisms, such as DSN, DEW, and

design space explorations and optimizations, which

make it possible to analyze DT structures and check

progress on various separate digital assets through

incremental integration.

A few other topics (such as code generation from product

specifications, semantic research document search, and question-

based DT instantiation using e.g. LLM technologies) are shown in

Figure 2 (two pages back), but not further discussed in this text.

3.3 Technological Enablers

Realization of the vision and DTF concepts can only be made

feasible with the right technological ingredients, which we will

touch upon here on a high level:

3.3.1 Domain-specific Languages (DSLs). This technology

forms the fundamentals for connecting nodes in a DSN (or in

other words: for encoding and organizing an organization’s

subject matter) in a feasible way. In its most naïve form, the

connections between the nodes in a DSN are hand-written scripts

that query elements from one specification and write them into

another. This approach is perfectly fine to start with, but as an

organization extends its ecosystem and DSNs start growing in

complexity, it may become unscalable. A more systematic

approach (enabling much more reuse and automation) would be to

capture the metadata for the elements one wants to exchange

from/to a specification. Again, a naïve implementation of this idea

would be to make a glossary of important subject matter terms of

the product’s or the organization’s domain and then match

keywords. Such metadata could help with traceability, but not

with harmonization between nodes in a DSN. A more advanced

implementation would be to use a decomposable glossary (where

a definition can use other terms that can be further defined

hierarchically), or even better an ontology with more explicit

relations between the concepts of the subject matter. The same

purpose can be achieved using DSLs built in a language

workbench with an object grammar, such as JetBrains

MetaProgrammingSystem (MPS) [2], but in a much more refined

way: a DSL encoded in MPS can not only hold the concepts and

their relations but also other language aspects, including various

language composition and extension mechanisms, which enables

deep integration of subject matter from various domains in a

maintainable way. Specifying and using DSLs in this way, where

the Abstract Syntax Tree (AST) – representing the essential

information of a specification – is central used to be unique to

JetBrains MPS, but more effort is being done to spread this

paradigm beyond MPS, which is demonstrated by efforts such as

Modelix [8] and LionWeb [9], where AST-based exchange of

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

elements between specifications (as opposed to file-based

exchange between specifications) is a first-class citizen.

3.3.2 Integrational DSL cores. Organizing the various subject

matter domains from tools (whether they are off-the-shelf or in-

house) can be achieved systematically by using integrational

DSLs, such as the earlier mentioned component models, feature

models, but also at a deeper level of expressions and constraints.

The Integrated Environment for Technical Software Systems

Specification (IETS3) [4], which is built in MPS, provides

important ingredients, such as an out-of-the-box variant

management framework that can be connected to and configure

models written in MPS-based DSLs for any domain [28,29], a

featureful, extensible functional language (KernelF) that serves as

a base for building and integrating complex MPS-based DSLs

with expressions [5,6,7], and a physical units language with

customizable units that are part of an attribute or constraint

expression’s type. Figure 3 shows how such DSLs (together with

a component modeling language) can serve as a backbone to

organize and integrate the subject matter through various domains

of an organization. For example: the mechanics/software

discipline interface language can be used to expose relevant

parameters of a CAD model on system-level in a component

model (e.g. as component attribute).

3.3.2 Computing platform. High-performance compute

infrastructure is an important prerequisite to be able to run non-

trivial DEWs. Although computation capacity can be bought

online, it may be prudent to invest into building an in-house

computation platform, not only for keeping confidential

information inside the organization’s perimeter, but also for cost

considerations. A rule of thumb is that operational (thus recurring)

computation capacity should be covered in-house, while

incidental spike capacity can be rented externally. In addition to

one or more computation platforms, execution engines are needed.

Various off-the-shelf workflow engines exist for these purposes,

but the mapping from a DEW specification to one or more

execution engines that run on one or more execution platforms,

would be (at least nowadays) part of a DTF’s in-house

implementation.

3.3.2 DevOps and Cloud Technologies. Various off-the-shelf

ALM and PLM systems are available to manage digital assets.

Typically, tools and DTF infrastructure tools benefit a lot from

DevOps infrastructure to guard quality and validity through

testing and automatic (re-)validation. Cloud technologies, both

front-end and back-end are essential to scale the use of a growing

set of complex combinations of various tools. Back-end

technologies enable scalable deployment of various

(collaborative) specification (micro-)services, while front-end

technologies allow for user-level integration of many complex

services into conceptually clear and unified user interfaces.

3.3.2 Data + modeling strategy. In order for the data in the data

warehouse to be reusable for various purposes (such as data

analysis, computational model validation, and preparation for

input to computations, the production of data must be precisely

specified for structured logging [30,31,32] and preferably

connected to the product specifications. This makes it possible to

make important mappings for data logging (with the product

specifications as the leading source) and for data consumption by

devDTs [17].

Figure 3: JetBrains MPS language workbench and integrational DSL cores: backbone to organize an organization’s subject matter

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

4 Holistic Organizational Embedding

The earlier described technological and conceptual base for a

DTF is a good starting point to digitally transform complex

product development in a systematic way, but it doesn’t guarantee

actual “success on the work floor”. Additional variables, such as

expertise of people, way of working, explicit roles and

responsibility in the organization, and a process around asset

management (physical and digital together) factor into the

equation. All are centered around knowledge/expertise

development and applied in product development.

4.1 Physical and digital assets

When considering physical and digital assets, there are several

relevant dimensions:

I. Product contents scope

a. Discipline (i.e. “mono-disciplinary”)

b. Product functionality (one or more

disciplines)

c. Product quality attribute (cuts across one or

more functionalities)

d. Product (overarches one or more quality

attributes)

e. Platform (stretches over one or more

products)

II. Organizational

a. Competences (disciplines, departments) and

Platform: captures and maintains knowledge

and typically has its own organization-specific

set of roles. Focuses on reuse and supporting

competences (knowledge – IP and generic,

process, roles) across projects, endless; owns

physical and digital assets.

b. Product development: uses knowledge to

develop products, places knowledge in a

specific context. Solves project needs.

III. Asset types

a. On one side we have the knowledge/expertise

development, involving infrastructure, tools,

and model libraries (reusable assets)

b. On the other side we have product

development involving models and

configurations (product-specific assets)

IV. Domain-specificity: Generic/fundamental ↔ Quality

attributes and functionality ↔ Organization-specific

(“core IP”)

V. Ownership/development

a. (Commercial) off-the-shelf ↔ in-house

VI. Expertise

a. Expertise levels: novice … expert [33]

b. Expertise areas: application, fundamental,

digital literacy and knowledge of working

with physical assets

c. Proto-roles: method owner, user, tool smith

(minimum set needed for successful digital

asset introduction and sustaining)

The complexity of (a holistic view on a collection of) assets is

like a cartesian product along (at least) each of the above

described dimensions (imagine a combination of sliders, one or

more for each dimension): I × II × III × IV × V × VIa × VIb ×

VIc. Making no choice in a dimension is also a choice, and in our

experience every choice leads to consequences.

4.2 Digitally Transformed Development

Processes and Organization

This kind of digital transformation involves moving away from

the “old” physical-prototype-based way of working (“build a

product demonstrator and see if it works, how it behaves, what its

capabilities are”) to the new DTF-based way of working (“first

think about design questions and risks, then think about how you

can answer the questions, and finally answer them”). This opens

up new options to answer product-development-related questions:

in addition to using integrated testbenches or fully integrated

product prototypes, on-demand digital twins (or hybrid physical-

digital setups) can be used. This not only enables smarter use of

expensive physical assets such as partial testbenches or laboratory

measurement setups (optimally for solely mapping out unknown-

unknown or known-unknown knowledge, while handling known-

knowns and unknown-knowns with digital assets), but also opens

up the space of possibilities to answer questions and improves

development lead-time by front-loading many integration-related

Figure 4: Applying the DTF-based approach in product development

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

questions to digital assets (which can be made operational much

quicker than physical assets).

The new, proposed way of working not only has advantages, but

also poses new challenges:

4.2.1 How to develop new assets. Development of new or

significant adaptation of existing digital assets (especially over the

lifetime of a single product development phase) is not always

straightforward. For example, in an early development phase of a

product, you already need tools with validated computational

models but one or more of the needed tools may not be developed

yet; however, it can happen that once a needed tool is made, there

is no significant value for the product in question, because

important architectural and design decisions may have already

been made for that product. This challenge not only requires a

new mindset and understanding of product developers on what to

expect from digital assets (see Figure 4, second column), but also

a road mapping of asset and competence development across

products or even entire product portfolios.

4.2.2 How to apply in product development. Figure 5 visualizes

the method for applying the DTF-based way of working in such a

manner, that development steps maximally leverage any available

just-in-time knowledge, front-loading design option investigations

as much as possible. This method involves a stepwise,

incremental process:

- The starting point is an architectural or design

question (left top blue text in capitals).

- If the question can be answered in the DSN of the

product (e.g. through simple “Excel-like”

computations on the component model or some

lightweight computations in other specification

assets), the answer is already obtained (possibly after

first making new or updating existing product

specifications) and a next question is formulated.

- Should the question be more involved, the next step

is to try to answer the question using analysis models

(i.e. in an existing DEW). In case no ready-to-use

DEW or design space exploration/optimization

specification exists for the question, the DT

integrator(s) is/are involved to create a DEW.

- In case the question cannot be answered using a DT

(DSN, DEW, or a mix of both), it may be possible to

answer the question through querying and analyzing

data from the data warehouse (possibly needing to

develop a new data analysis). A check should be

made whether the data from the data warehouse can

be used to extend a DEW so it could answer this

question in the future.

- As a last resort, a (set of) physical setup(s) can be

used to do a physical experiment in order to answer

the question. In line with data + models strategy, any

logging or measurement data from a physical setup

must be collected in the data warehouse.

Figure 5: A stepwise, incremental process to using the DTF-based way of working

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

If this process is followed, then every R&D activity in product

development contributes to an ever growing corpus of knowledge

which is explorable, learnable, and virtualizable. A note must be

made about physical assets: these must be developed with

reusability over various products or product portfolios in mind.

Again, the above described process, combined with the DTF-

based way of working and infrastructure, helps a lot in designing

reusable physical assets: if (sets of) digital assets are linked up

(threaded) with physical assets through the DT abstraction, as

defined in the DTF proposal, there can be an organization-wide

insight into physical asset needs, physical asset waste, and

prevention of accidental dismantling of still needed physical

assets.

5 Current State

We believe that we currently have a solid base for a DTF-based

way of working and have started to sustainably introduce the

technological concepts and method to our organization (starting

with the R&D department). While doing so, we are validating

tools and methods in this conceptual framework in real-world use

cases, which gives us information for further developing the tools,

methods, and general approach.

This sounds like a very big step, but we reuse, leverage, and

bring together all the existing infrastructure and assets our

organization has developed over the years, sustainably spreading

the development and maintenance of the tools and infrastructure

needed for this approach.

We, as well as our organization, have a significant history in

this field [10,11,14,15,16] on various topics such as software

development, system development, language development, and

(multi-disciplinary) modeling and model interoperability, so to us

the DTF is not a surprise or “Aha-moment”, but rather a logical

continuation and consolidation of many lessons we learnt into a

conceptual framework (i.e. it is an evolution rather than a

revolution).

Although we have developed and validated digital assets and

various building blocks of the DTF in smaller contexts (stage 4 in

Figure 6), the full-scale application of the DTF-based way of

working for an entire complex multi-disciplinary cyber-physical

product is currently in a first-application phase (stage 3 in Figure

6), as part of our company’s digital transformation strategy, where

in-the-large validation for our incremental, holistic approach is

performed.

6 Conclusions and Possible Extensions

We believe that we have created a holistic, scalable, and

maintainable approach to digitally enhance and deeply transform

our product development activities, with obvious benefits such as

shorter time-to-market, customization, and managing the growing

complexity of our products.

Our company’s trust in using such a sustainable, incremental

development approach to physical/digital assets and competences

strategically gives us confidence to claim that we have a feasible

starting point for a holistic approach to engineering reusable,

configurable, and composable DTs for multi-disciplinary, cyber-

physical product development purposes.

Since the concepts described in this text are only a starting point

for an exciting journey, we invite the DT community to

collaborate on this approach. Concrete examples of topics that

may be areas of interest for us:

- A solid semantic base for interaction between DSNs,

component models, and feature models, as well as for

DEWs and all their intricacies

- (Semi-)automatic metadata scanning from digital assets

and harmonization of digital assets

- Semantics for component binding times (e.g. design-

time, simulation-time, production-time, in-the-field)

- Semantic search and intelligent question-based DT

instantiation

REFERENCES

Figure 6: Stages of digital transformation, using DTs as a core conceptual carrier (inspired by “2nd TNO Digital Twinning Round

Table 2022” meeting, 16 Nov 2022)

Self-published whitepaper as input for Workshops on Next-gen

Digital Twins, September, 2024, Eindhoven, Netherlands
E. Schindler et al.

[1] Eramo, R., Bordeleau, F., Combemale, B., van den Brand, M., Wimmer, M., &

Wortmann, A. (2022). Conceptualizing Digital Twins. IEEE Software, 39(2),

39-46. https://doi.org/10.1109/MS.2021.3130755

[2] JetBrains MPS. 2024. Meta Programming System: Create your own domain-

specific language. Retrieved June 2024 from https://www.jetbrains.com/mps/

[3] Antonio Bucchiarone et al (Ed.), 2021. Domain-Specific Languages in Practice:

with JetBrains MPS. Springer Cham. https://doi.org/10.1007/978-3-030-73758-

0

[4] IETS3. 2024. Integrated Environment for Technical Software Systems

Specification. Retrieved June 2024 from https://github.com/iets3

[5] Voelter, M. (2018). The Design, Evolution, and Use of KernelF. In: Rensink,

A., Sánchez Cuadrado, J. (eds) Theory and Practice of Model Transformation.

ICMT 2018. Lecture Notes in Computer Science(), vol 10888. Springer, Cham.

https://doi.org/10.1007/978-3-319-93317-7_1

[6] Voelter, M. (2017). KernelF-an Embeddable and Extensible Functional

Language.

[7] KernelF Introduction. 2024. Mbeddr documentation. Retrieved June 2024 from

http://mbeddr.com/mps-platform-docs/languages/kernelf/kernelf/

[8] Modelix. 2024. A collaborative and scalable open source platform for domain-

specific models on the web and in the cloud. Retrieved June 2024 from

https://modelix.org/

[9] LionWeb. 2024. Language Interfaces on the Web. Retrieved June 2024 from

https://lionweb.io/

[10] Hristina Moneva talk at Bits & Chips. 2023. Retrieved June 2024 from

https://events.bits-chips.nl/past-events/bitschips-event-

2023/index.html#moneva

[11] Eugen Schindler. 2021. Video. In Fifth talk in EDT.Community online seminar

series on Foundations and Engineering of Digital Twins. Retrieved June 2024

from https://www.youtube.com/watch?v=gocYGyl-6TU

[12] OPC Foundation. 2024. Introduction to the Asset Administration Shell.

Retrieved June 2024 from

https://reference.opcfoundation.org/I4AAS/v100/docs/4.1

[13] Andreas Wortmann. 2024. Digital Twin Definitions. Retrieved June 2024 from

https://awortmann.github.io/research/digital_twin_definitions/

[14] Moneva, H., Hamberg, R., & Punter, T. (2012). A Design Framework for

Model-based Development of Complex Systems.

[15] Erdweg, S. et al. (2013). The State of the Art in Language Workbenches. In:

Erwig, M., Paige, R.F., Van Wyk, E. (eds) Software Language Engineering.

SLE 2013. Lecture Notes in Computer Science, vol 8225. Springer, Cham.

https://doi.org/10.1007/978-3-319-02654-1_11

[16] Erdweg, S., Storm, T.V., Völter, M., Tratt, L., Bosman, R., Cook, W.R.,

Gerritsen, A., Hulshout, A., Kelly, S., Loh, A., Konat, G.D., Molina, P.J.,

Palatnik, M., Pohjonen, R., Schindler, E., Schindler, K., Solmi, R., Vergu, V.A.,

Visser, E., Vlist, K.V., Wachsmuth, G., & Woning, J.V. (2015). Evaluating and

comparing language workbenches: Existing results and benchmarks for the

future. Comput. Lang. Syst. Struct., 44, 24-47.

[17] Tan, H. (2019). Integration of modeling and data science. Technische

Universiteit Eindhoven.

[18] M. Dalibor, N. Jansen, B. Rumpe, D. Schmalzing, L. Wachtmeister, M.

Wimmer, A. Wortmann: A Cross-Domain Systematic Mapping Study on

Software Engineering for Digital Twins. In: Journal of Systems and Software,

111361,

[19] Andreas Wortmann. 2024. Digital Twins overview page. Retrieved June 2024

from https://awortmann.github.io/research/digital-twins/

[20] Grieves, M. and J. Vickers, Digital Twin: Mitigating Unpredictable,

Undesirable Emergent Behavior in Complex Systems, in Trans-Disciplinary

Perspectives on System Complexity, F.-J. Kahlen, S. Flumerfelt, and A. Alves,

Editors. 2016, Springer: Switzerland. p. 85-114

[21] Wikipedia. 2024. Digital Twin article. Retrieved June 2024 from

https://en.wikipedia.org/wiki/Digital_twin

[22] Wikipedia. 2024. System article. Retrieved June 2024 from

https://en.wikipedia.org/wiki/System

[23] Wikipedia. 2024. Turtles all the way down article. Retrieved June 2024 from

https://en.wikipedia.org/wiki/Turtles_all_the_way_down

[24] Fuller, A., Fan, Z., Day, C., Barlow, C., "Digital Twin: Enabling Technologies,

Challenges and Open Research," IEEE Access, vol. 8, pp. 108952-108971,

2020

[25] Grieves, M., Vickers, J., "Digital Twin: Mitigating Unpredictable, Undesirable

Emergent Behavior in Complex Systems," Transdisciplinary Perspectives on

Complex Systems, Springer, 2017, pp. 85-113

[26] Akhter, S. (2023). Componentization of Product Knowledge of Production Print

Systems: Case Study: Fixation. Technische Universiteit Eindhoven.

[27] Rabiser, R., Grünbacher, P., & Dhungana, D. (2007). Supporting Product

Derivation by Adapting and Augmenting Variability Models. In Software

Product Lines, 11th International Conference, SPLC 2007, Kyoto, Japan,

September 10-14, 2007, Proceedings (pp. 141-150). IEEE Computer Society.

https://doi.org/10.1109/SPLINE.2007.22

[28] Klaus Birken (itemis). 2023. Adding complex cross-cutting functionality to

(nearly) any language – mechanisms and challenges. Retrieved June 2024 from

https://youtrack.jetbrains.com/articles/MPS-A-216170508/JetBrains-MPS-

Community-Meetup-2023-Videos-and-Slides.

[29] Klaus Birken (itemis). 2023. Adding complex cross-cutting functionality to

(nearly) any language – mechanisms and challenges. Video. (11 May 2023).

Retrieved June 2024 from https://www.youtube.com/watch?v=eAqh819L_Vw

[30] Legeza, V., Golubtsov, A., & Beyer, B. (2019). Structured logging: Crafting

useful message content. login;, 44(2). Retrieved June 2024 from

https://research.google/pubs/pub47257/

[31] Kratzke, N. (2022). Cloud-native observability: The many-faceted benefits of

structured and unified logging—A multi-case study. Future Internet, 14(10),

274. https://doi.org/10.3390/fi14100274

[32] Nouhoum Traore. 2024. Structured Logs: Best Practices for Effective

Management. Retrieved June 2024 from

https://medium.com/@nouhoum/structured-logs-best-practices-for-effective-

management-0f8dfd3ab31c

[33] Dreyfus, S. E., & Dreyfus, H. L. (1980). A five-stage model of the mental

activities involved in directed skill acquisition. University of California,

Berkeley, Operations Research Center.

